Tetrahedron Letters No. 17, pp 1481 - 1484, 1977. Pergamon Press. Printed in Great Britain.

PARTIAL SYNTHESIS OF FUSIDIC ACID¹

Masato Tanabe,* Dennis M. Yasuda and Richard H. Peters Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025

(Received in USA 6 December 1976; received in UK for publication 16 March 1977)

The structural elucidation of a closely related group of steroidal antibiotics, fusidic $\operatorname{acid}^2(\underline{1})$, cephalosporin P.,³ and helvolic acid^4 has established that these antibiotics possess unique structures and stereochemistry. Recent attention has focused on the synthesis of the novel tetracyclic <u>trans</u>, <u>syn</u>, <u>trans</u> ring system of fusidic $\operatorname{acid}^{5,6}(\underline{1})$. The two reported syntheses have as an intermediate target a tetracyclic steroid skeleton bearing a C-17 ketone function for ultimate elaboration to fusidic acid . We wish to report a successful synthetic method for introduction of the characteristic 17(20)Z isooctenoic acid side chain of these antibiotics on to a tetracyclic intermediate, such as the C-17 ketone (<u>3</u>).

The tetracyclic C-17 ketone $(\underline{3})$,⁷ which can also serve as a convenient relay intermediate, was obtained from the methyl ester of diacetoxyfusidic acid ($\underline{2}$) by oxidative cleavage of the $\Delta^{17(20)}$ bond with ruthenium tetraoxide.⁸ The product was isolated by silica gel column chromatography eluting with 10% ether-benzene. The CD spectrum [CD-curve: $\lambda^{dioxane}$ 298 nm ($\Delta \varepsilon = -4.15$)], of ketone <u>3</u> indicated that the C-13 α stereochemistry of fusidic acid was retained. This result is in agreement with previously reported work.⁹

We have previously reported that the addition of lithium α -lithiopropionate to C-17 ketones in the androstane series offers a convenient route to 17 β -hydroxybisnorcholanic acid derivatives.¹⁰ Extension of this reaction to the addition of the lithium dianion of 6-methyl-5-heptenoic acid to the C-17 ketone (<u>3</u>) was investigated for application to fusidic acid synthesis.

The desired 6-methyl-5-heptenoic acid¹¹ was conveniently prepared in 50% yield by the reaction of 1-bromo-4-methyl-3-pentene¹² with the dilithium salt of acetic acid in tetrahydro-furan.¹³ Lithium 2-lithio-6-methyl-5-heptenoate was then generated in the usual manner with lithium diisopropylamide in THF and condensed with the C-17 ketone (<u>3</u>) to give after esterification with methyl iodide and sodium bicarbonate in dimethylacetamide a stereoisomeric mixture

of the tetrol 4 and its monoacetate 5 as the major products. The tetrol 4 was isolated as a mixture (1:1) of 4a and 4b in 22% yield by preparative tlc (silica gel) using a 50% etherbenzene solvent system. The monoacetate 5 proved to be the 11-acetate based on nmr chemical shift data as previously reported.⁷ The monoacetate 5 (Calcd. for $C_{32}H_{52}O_7$: C, 70.04; H, 9.55. Found: C, 70.05; H, 9.54) was a mixture of two stereoisomers 5a and 5b (20% yield of each) which were separable by preparative tlc (50% ether-benzene). These isomers were considered to be C-20 stereoisomers from their nmr spectra. The nmr spectra of each isomer isolated by preparative tlc were identical except for the chemical shifts of their C-16 protons (4.50 and 4.18 ppm) and their C-8 α angular methyls (1.26 and 1.32 ppm) and were consistent with their proposed structures with C-17 α oriented side chains. From inspection of models of both isomers in a hydrogen-bonded rotamer form⁹ between the C-20 carboxyl and C-17 β hydroxyl, it appears that the different chemical shifts of the C-8 α -angular methyls in the two isomers result from their interaction with the C-17 α -oriented isooctenoic acid side chain. Presumably if the side chain were β -oriented, the resonance of the C-14 β angular methyl would not be expected to remain constant as found. It appears therefore that the two components of 5 are enantiomeric around C-20 and not C-17.

Isomer <u>5a</u>, nmr (CDCl₃): 1.13 (14 β -CH₃), 1.26 (8 α -CH₃), 2.03 (11-OAc), 4.50 (d, J = 8 Hz, C₁₆-H), 5.27 (C₁₁-H), was acetylated with acetic anhydride in pyridine to afford the 3 α ,11 α , 16 β -triacetoxy derivative <u>6a</u>. The triacetate <u>6a</u> was dehydrated with phosphorus oxychloride in pyridine to give, after preparative thin-layer chromatography, an oil (<u>2</u>) (30% yield), which was identical to authentic methyl diacetoxyfusidate obtained directly from esterification and acetylation of fusidic acid. Our attempts to crystallize the oil were not successful; other previously reported attempts were also unsuccessful.⁷ The methyl ether triacetates (<u>2</u>) obtained from compounds <u>6a</u> and <u>1</u> were separately hydrogenated to yield crystalline 24,25 dihydro derivatives <u>7</u> which were identical in all respects.

If the dehydration of <u>6a</u> with phosphorus oxychloride to methyl diacetoxyfusidate <u>2</u> involves a transition state in which the C-20 proton assumes a <u>trans</u> position relative to the 17β -hydroxyl group, then <u>6a</u> would have the 20R configuration.

Isomer <u>5b</u>, nmr (CDCl₃): 1.13 (14 β -CH₃), 1.32 (8 α -CH₃), 2.03 (11-OAc), 4.18 (d, J = 8 Hz, C₁₆-H), 5.26 (C₁₁-H), was similarly acetylated to afford <u>6b</u>. In contrast, dehydration of isomer <u>6b</u> yielded methyl diacetoxylumifusidate (<u>8</u>), (17*E*), nmr (CDCl₃): 2.03 (16-OAc), 3.71 (methyl ester), and 5.69 (d, J = 8 Hz, C₁₆-H). From this data <u>6b</u> was assigned the 20S configuration and the structure is in agreement with the spectral and chemical data. An authentic sample of <u>8</u> was synthesized by esterification and acetylation of lumifusidic acid,¹⁴ and was found to be identical with the product from the dehydration of the 20S isomer of 6b.

This successful transformation of <u>3</u> to the required $\Delta^{17(20)}$ unsaturation and Z-stereochemical configuration of the isooctenoic acid side chain thus offers the means to complete any total synthetic effort towards these antibiotics from a tetracyclic target compound¹⁵ having a C-17 ketone.

Acknowledgements

The authors wish to thank Dr. F. L. Weisenborn, Squibb Institute for Medical Research, and Dr. W. D. Godtfredsen, Leo Pharmaceutical Products, for their generous gifts of fusidic acid.

REFERENCES AND NOTES

- This work was supported by the Public Health Service under Grant AI 07397 from the National Institute of Allergy and Infectious Diseases.
- 2. W. O. Godtfredsen and S. Vangedal. Tetrahedron 18, 1029 (1962).
- 3. H. S. Burton, E. P. Abraham, and H.M.E. Cardwell. Biochem. 62, 171 (1956).
- 4. S. Okuda, S. Iwasaki, M. I. Sair, Y. Machida, A. Inoue, K. Tsuda, and Y. Nakayama. Tetrahedron Letters, 2295 (1967).
- 5. W. G. Dauben, G. Ahlgren, T. J. Leitereg, W. C. Schwarzel, and M. Yoshioka. J. Amer. Chem. Soc. <u>94</u>, 8593 (1972).
- 6. R. E. Ireland and U. Hengartner. J. Amer. Chem. Soc. 94, 3652 (1972).
- 7. P. A. Diassi, I. Bacso, G. W. Krakower, and H. A. Van Dine. Tetrahedron 22, 3459 (1966).
- R. C. Ebersole, W. O. Godtfredsen, S. Vangedal, and E. Caspi. J. Amer. Chem. Soc. <u>95</u>, 8133 (1973).
- 9. W. O. Godtfredsen, W. von Daehne, S. Vangedal, A. Marquet, D. Arigoni, and A. Melera. *Tetrahedron* <u>21</u>, 3505 (1965).
- 10. M. Tanabe and R. H. Peters. J. Org. Chem. <u>36</u>, 2403 (1971).
- 11. M. F. Ansell and S. S. Brown. J. Chem. Soc., 1788 (1957).
- 12. M. Julia, S. Julia, and R. Guégan. Bull. Soc. Chim. Fran., 1072 (1960).
- 13. P. L. Creger. J. Amer. Chem. Soc. 89, 2500 (1967).
- W. O. Godtfredsen, W. von Daehne, L. Tybring, and S. Vangedal. J. Med. Chem. 9, 15 (1966).
- 15. We have converted methyl diacetoxy fusidate to fusidic acid by selective saponification procedures. Thus this synthesis offers a relay route for any formal total synthesis of fusidic acid.